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Abstract. We are developing two crucial improvements on the time-frequency masking approach to the blind speech separa-
tion of underdetermined mixtures when processing anechoic and echoic mixtures. First, the proposed method copes with the 
usually large amount of delay estimation error that appears in a low frequency band. This step generates a restrictive mask for 
phase delays on the basis of local and global energy distribution analysis. This mask allows the selected cells to contribute to 
the orientation histogram. Second, the strong WDO assumption (disjoint orthogonal frequency domain) is relaxed by allow-
ing some frequency bins to be shared by both sources. By detecting fundamental frequencies of speakers at instantaneous 
time points, mask creation is supported by exploring their harmonic frequencies. The proposed method is proved to be effec-
tive and reliable in conducting experiments with both simulated and real-life mixtures. 
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Introduction 
Recently proposed time-frequency (T-F) methods of 
blind speech separation (Makino et al. 2007) for the un-
derdetermined mixture case, known as DUET (Yilmaz et 
al. 2004; Rickard 2007), TIFROM (Abrard et al. 2005), 
DEMIX (Arberet et al. 2010), etc. explore differences in 
the locations of the speakers. They first make feature 
clustering or histogram analysis in the attenuation rate 
and time delay spaces to detect the number and character-
istics of speakers. Second, the reconstruction of sources is 
performed by masking the spectrogram of a mixture with 
appropriate binary masks created in accordance with the 
estimated cluster centers (or histogram peaks) of the giv-
en feature. In DUET, a weighted two-dimensional (2-D) 
histogram is constructed expressing differences in ampli-
tude and phase between time-frequency representations 
of two mixtures. A histogram peak is assumed to repre-
sent a source – uniquely characterized by relative attenua-
tion and time delay.  

Modifications to the basic T-F masking approach 
focus on increasing the reliability of delay information 
provided by spectrogram cells. In SAFIA (Aoki et al. 
2001), the authors extend delay measurement to handle 
more than two observations. The DUET method uses a 
weighting scheme for features – weight grows with the 
growing frequency of the element. TIFROM, DEMIX 
and the uniform clustering approach (He et al. 2009) 
observe the stability of delay feature in a local neighbor-

hood in spectrogram space and associate an appropriate 
confidence measure with such delay data. The HS method 
(Ouchi et al. 2009) explores other kind of information as 
a feature selection criterion. It uses a harmonic structure 
of a speech signal to support the feature clustering step. 
The proposed method estimates the fundamental frequen-
cy of the source given initial separation results. This in-
formation allows to select frequency components of the 
mixture which probably come from a single source.  

T-F methods usually work well for anechoic mix-
tures and significantly different orientations of speakers’ 
w.r.t the microphone set. Otherwise, they fail due to the 
following difficulties: 1) in echoic mixtures, the delays 
estimated (especially) for low frequencies are signifi-
cantly disturbed; 2) even in anechoic mixtures, the WDO 
assumption (disjoint orthogonal of sources in the fre-
quency domain) is not fully satisfied (especially in the 
low frequency band). 

This paper proposes a more restrictive than before 
selection of the “true” phase delays based on local and 
global energy distribution analysis performed in the T-F 
domain (spectrogram). The second contribution is to 
relax with the WDO assumption by allowing frequency 
bins to be shared by more than one source. Then, the 
mask for the source extraction stage is created not only 
by applying the time delay criterion but also by exploring 
the harmonics of fundamental frequencies.  

The remainder of this paper is organized as follows. 
First, the basic approach to time-frequency masking in 
blind source separation is introduced. Then, the first  
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modification, regarding histogram detection for the DOA 
feature, is described. Then, the second modification, re-
garding the creation of the WDO-based separation mask, 
is described. The experiments provided in the last section 
show how the proposed approach is validated and com-
pared with the basic solution. 

T-F masking Approach to BSS 
Lake In discrete time domain, suppose that sources 
s1,...,sN are convolved and mixed. This is observed at M 
sensors:  
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where τ is the discrete time index, hjk(l) represents impul-
se response from source k at sensor j, N is the number of 
sources and M is the number of sensors.  

We focus particularly on the situation where the 
number of sources N = 2 and the number of sensors  
M = 2 (Fig. 1). Typical time-frequency masking methods 
for BSS are based on the difference of arrival time 
(DOA) principle and the WDO (frequency-domain dis-
joint orthogonal) assumption.  

 

Fig. 1. The arrangement for the measurement of 2 mixtures of 
2 sources 

DOA histogram. Time domain signals, xj(τ), sam-
pled at frequency f are converted to the frequency domain 
into a time-series of vector signals Xj(t, f) by applying L 
point STFT to consecutive signal frames: 
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where w(r) is a window function, S is the size of window 
shift, t is the integer time frame index and f (∈[0, L/2]) is 
an integer index of the frequency bin.  

The selection of an appropriate feature that diffe-
rentiates between sources is essential in every approach 
to blind source separation. T-F masking approaches utili-

ze the DOA prinicple – for different sources there must 
be a dfferent delay calculated from phase difference bet-
ween observations. Assuming that microphone 1 is the 
reference point, the anechoic mixing process can be ex-
pressed as 
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where δi ( i =1,2) are time delays between two micro-
phones for each source and L is the number of STFT 
points. Under the condition of WDO, the mixing model 
(3) can be simplified to  
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where f(1), f(2) are disjoint frequency subsets, at which the 
components of sources 1 or 2 are of non-zero amplitude. 
Time delay δ corresponds to phase difference φ at fre-
quency f as follows:  
 ( , ) ( , ) .2

Lt f t ffδ ϕπ=  (5) 

Phase difference φ(t,f) is obtained from mixture 
spectrograms as 
 1 2( , ) ( , ) ( , ) .t f X t f X t fϕ = ∠ −∠  (6) 

Assuming sparse speech signal in time and frequen-
cy, to reconstruct original signals, time-frequency cells 
must be clustered into two groups. The time delay be-
tween the observed signals can be an effective feature. 
Using the estimated delays and creating their histogram, 
we shall be able to detect two histogram peaks, δ1 and δ2, 
corresponding to two sources.  

WDO assumption. The time-frequency masking 
approach to blind speech separation utilizes instantaneous 
mixtures at each time frame t and frequency bin f : 
 ( , )
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where Hjk(f) is the frequency response of the mixing sys-
tem and Sk(t, f) is a frequency domain representation of 
the k-th source signal. It is assumed that in the time-
frequency domain, signals have the property of sparse-
ness (also called WDO assumption) i. e.  
 1 2 ,( , ) ( , ) 0, .t fS t f S t f⋅ ≈ ∀  (8) 

Under this assumption, source reconstruction is pos-
sible up to a scaling coefficient even without the estima-
tion of the frequency response of mixing matrix 
(H(f)=[Hjk(f)]). Though delay data δ(t, f) are spread, the 
peaks can approximately estimate the direction of 
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sources. In the conventional method, clustering is given 
by drawing the separation line in the middle of two his-
togram peaks. Then, binary masks are generated accord-
ing to the following decision rule: 
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Obviously, the quality of binary masks depends 
strongly on the clustering quality of the DOA feature and 
how well the WDO assumption is satisfied by the current 
mixture. 

After binary masks over all the spectrogram's cell 
are created according to the histogram peaks of the clus-
tering feature, spectral contributions to each expected 
source are filtered out from the specrum of the first mix-
ture. Therefore, when using binary masks Mi(t, f), sepa-
rated spectral signals Ŝi(t, f) are given as 
 1

ˆ ( , ) ( , ) ( , ) .i iS t f M t f X t f=  (10) 
By following inverse short-time Fourier Transform 

(ISTFT), the sources in time domain can finally by re-
constructed.  

DOA Feature and Histogram Detection 
We can draw two important conclusions from our ex-
perimental analysis of speech mixtures:  

1. A feature value should be linearly proportional 
to the orientation angle – then it can reliably be 
used to separate two sources very close to each 
other not only at directions around 0 degrees but 
also at those of around 90 degrees. 

2. A highly selective scheme is needed to concen-
trate on relatively error-free feature information 
only. 

Feature: orientation instead of delay time. Instead 
of delay time, typically applied as a clustering feature, we 
perform histogram analysis of the feature that is directly – 
orientation angle θ (t, f). In fact, for the arrangement 
given in Fig. 1, where two sources are located at the same 
distance of 2 m from the centre between microphones, we 
can accept that 
 ( , ) arcsin( ( , ) / ) ,t f t f c dθ δ= ⋅  (11) 
where c is the average speed of sound and d – the base 
distance between two microphones. Delay time δ(t, f) can 
be measured from the mixture spectrogram according to 
equations (5) and (6). From (11), in turn, we observe that 

delay time is nonlinearly dependent on the orientation 
angle. Thus, we can write that 
 ( ) sin( ) .d cδ θ θ=  (12) 

Let us consider what happens if two sources are 
very close to each other. The most difficult case in T-F 
based speech separation is given when two sources are 
very close and nearly in-line with this base line of micro-
phones. Assume that θ1 = 80o and θ2 = 90o, with respect 
to the normal base line of microphones. Compare two 
histograms obtained in this case of different features –
orientation θ(t, f) and time delay δ(t, f) (Fig. 2). 

 
a) 

  
b) 

 
Fig. 2. Two histograms of different features in case two sources 
are located at 80o and 90o: (a) delay time, (b) orientation 

Two clear local maxima are present in the orienta-
tion histogram (Fig. 2 b), because there are many bins 
between the values of 80 and 90 on the orientation scale, 
which is the same number of bins as that between 0 and 
10 on this scale. However, in the time delay histogram 
(Fig. 2 a), orientations 80 and 90 correspond to very close 
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time delay values of 0.9848 and 1.000 [d/c]. It is virtually 
impossible to distinguish different histogram peaks for 
them. 

Energy-based selection of a clustering feature. A 
restrictive feature selection procedure is developed, in 
which two criteria are jointly used, i.e. consider only 
information coming from  

1) local energy maxima cells where the maxima 
are computed along each frequency-indexed 
column; 

2) near global maximum cells along time axis 
for each frequency bin.  

The high selectivity of both criteria is illustrated in Fig. 3.  
 
a) 

 b) 

 c) 

 d) 

 
Fig. 3. The illustration of the feature selection procedure: (a) an 
input spectrogram, (b) the binary mask of local energy maxima 
(along frequency axis), (c) the binary mask of sufficient energy 
per frequency bin (along time axis), (d) the combined T-F cell 
selection mask 

Source Mask 
The next novelty is to explore fundamental frequencies of 
speakers, i.e. to detect and track them along in time and 
to influence by them the source mask creation. This step 
is illustrated in Fig. 4. 
 
a) 

 b) 

c)  

 
Fig. 4. The illustration of the fundamental frequency detection 
step: (a) energy distribution-per-frequency bin in some time 
window, (b) local energy maxima in (a), (c) selected 
fundamental frequencies of the first and second source and their 
first common frequency 
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Having detected the distribution of fundamental fre-
quency f0i(t) for every expected source spectrogram 
Si(f, t), we can extract such spectrogram from given 
X1(f, t) more reliably than by using a binary mask only. 
Now, the mask no longer needs to be a binary one but the 
many-valued one. Spectrogram cells with delays match-
ing the histogram peaks are classified to an appropriate 
source, i. e. an appropriate T-F source mask is filled with 
value 1 and the other with 0 at the given cell. Otherwise, 
the masks are filled with some values from interval [0, 1] 
computed by normalized frequency distance functions 
Ai(t,f), i=1,2. The rule for creating T-F mask is: 
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Normalized frequency distance functions are 
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where f0i(t)-s represent the fundamental frequency of 
source i in window t. Distance function W(t, f, f0) gives 
weight in proportion to the distances of cell frequency f to 
the two nearest harmonic frequencies of the given source 
(nL f01 and nH f02 ) where  
 0 and 0 and 1 ,L Hf n f f n f H L≤ ≥ = +  (15) 
W(t,f, f0) is a magnitude average in the  above interval: 
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where  
 ( )0 0 .Lf n f fβ = −  (17) 

Results 
The experimental setup (Fig. 1) is as follows: 

− sampling frequency: fs= 8 000 Hz; 
− microphone distance: d = 40 mm; 
− sound velocity: c = 340 m/s; 
− window function: hamming; 
− STFT frame length: L = 1 024; 
− frame overlap: ∆ = 512. 

Orientation estimation. Tables 1, 2 and 3 show the 
results of two sources – men and women voices – located 
at different orientations in a circle with the radius of 
2 [m] in front of a pair of microphones. The results in 
Table 1 were obtained for real acquired mixtures and 
present clustering a standard feature –time delay δ. It can 
be observed that the detection of orientations near the 
base line of microphones, i. e. 80°–90°, is at least very 
difficult if not impossible. The results in Tables 2 and 3 
are from clustering directly the feature of orientation 
where Table 2 shows the results obtained for the same 
natural sources but for a simulated mixture pair, while 
Table 3 presents the results for real acquired mixtures. 
We observe how the detection of orientation has im-
proved for orientations of 80°–90°. 
Table  1. The estimated orientations θ1 and θ2 based on the time 
delay histogram for two real acquired mixtures 

Women 
  at 

Men at 
20o 30o 40o 50o 60o 70o 80o 90o 

10o 13.5 
21.9 

14.9 
29.4 

13.5 
40.8 

13.5 
46.4 

13.5 
54.8 

12.1 
67.4 

12.1 
73.2 

12.1 
78.4 

Table 2. The estimated orientations θ1 and θ2 based on the 
feature of the orientation histogram for two simulated mixtures 
of real sources 

Women 
at 

Men at 
20o 30o 40o 50o 60o 70o 80o 90o 

10o 10.8 
20.5 

10.8 
29.4 

9.4 
40.8 

9.4 
50.4 

9.4 
59.8 

9.4 
69.1 

9.4 
78.7 

9.5 
87.4 

Table 3. The estimated orientations θ1 and θ2 based on the 
orientation histogram for two real acquired mixtures 

Women 
  at 

Men at 
20o 30o 40o 50o 60o 70o 80o 90o 

10o 13 
22 

15 
29 

13 
41 

13 
46 

13 
55 

12 
73 

12 
78 

12 
87 

 
Source reconstruction quality. For total perform-

ance evaluation, we use the WDO coefficient (measure of 
W-disjoint orthogonal) computed from two other crite-
ria – PSR (the Preserved-Signal Ratio) and SIR (the Sig-
nal-to-Interference Ratio) and defined as 
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where SD(t, f) is a desired spectrogram, MD(t, f) is a spec-
trogram mask for a desired source and SI(t, f) is an inter-
fering spectrogram. The interval of WDO values is  0 ≤ 
WDO ≤ 1. The ideal extraction of the desired source 
means that WDO(D, I) = 1.  

The results in Table 4 clearly document that a bi-
nary spectrogram mask does not allow a proper extraction 
of speech sources from real echoic mixtures. WDO coef-
ficients have low values in the range of [0.26, 0.66].  
Table 4. WDO(1,2) and WDO(2,1) coefficients with binary 
spectrogram masks for histogram peaks in Table 1 for real 
acquired mixtures 

Women 
  at 

Men at 
20o 30o 40o 50o 60o 70o 

10o 0.391 
0.269 

0.464
0.329 

0.661 
0.522 

0.598 
0.401 

0.502 
0.296 

0.498 
0.271 

Table 5. WDO(1,2) and WDO(2,1) coefficients with multi-
valued spectrogram masks and for histogram peaks in Table 2, 
for simulated mixtures 

Women 
at 

Men at 
20o 30o 40o 50o 60o 70o 80o 90o 

10o 0.907 
0.964 

0.921 
0.962 

0.942 
0.952 

0.931 
0.958 

0.928 
0.958 

0.925 
0.960 

0.931 
0.956 

0.934 
0.956 

 
The results provided in Tables 5 and 6 have been 

achieved by applying the multi-valued mask for source 
extraction. Table 5 shows WDO coefficients in case of 
simulated mixtures, whereas Table 6 – for real acquired 
mixtures and for difficult orientations tending towards 
90°. The results are significantly better than in the case of 
the binary mask. With the multi-valued mask even for 
orientations of 80° or 90°, where the binary mask failed, 
sufficiently good source extraction is possible. 
Table 6. WDO(1,2) and WDO(2,1) coefficients for multi-
valued spectrogram masks and for real acquired mixtures 

Women at 
Men at 60o 70o 80o 90o 

50o 0.926 
0.904 

0.910 
0.889 

0.900 
0.874 

0.880 
0.858 

60o – 0.907 
0.893 

0.902 
0.880 

0.880 
0.857 

70o – – 0.816 
0.756 

0.687 
0.586 

80o – – – 0.449 
0.271 

6. Conclusions 
Two major improvements on time-frequency masking 
approaches to blind speech separation have been proposed 
and tested for a two-microphone case. They are based on 
observation that a strict WDO assumption (disjoint or-
thogonality of sources in the frequency doimain) is practi-
cally not fully satisfied. In the proposed method, the 
creation of an orientation histogram is efficiently per-
formed by considering phase-difference data on reliable 
cells only. Hence, we combine an energy local maximum 
criterion along the frequency axis (for every time frame) 
with relative energy threshold along the time axis (for each 
particular frequency bin). Conversion from a binary spec-
trogram mask to a multi-valued mask, applied for source 
extraction, constitutes the second major improvement. The 
orientation peaks are responsible only for selecting spec-
trogram cells with nearly perfect match. Otherwise, har-
monic frequencies are applied as a new selection criterion.  
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KALBĖTOJO APTIKIMAS IR ŠNEKOS IŠSKYRIMAS DVIEJŲ SIGNALŲ MIŠINIUOSE SU AIDU 
W. Kasprzak, N. Ding, N. Hamada 
Santrauka 
Straipsnyje nagrinėjamas aklasis signalų šaltinių išskyrimas 
apdorojant signalų mišinius su aido efektu ar be jo. Detaliai 
pristatomi matematiškai bei eksperimentų su dirbtiniais ir rea-
liais šnekos duomenimis rezultatais pagrindžiami du esminiai 

šio metodo patobulinimai. Pirmasis patobulinimas leidžia suma-
žinti vėlinimo žemuose dažniuose įtaką šnekos signalo išskyri-
mo klaidai. Antrasis patobulinimas, paremtas kalbėtojo pagrin-
dinio dažnio sekimu, leidžia algoritmui išnaudoti tas pačias 
dažnių sritis skirtingiems signalų šaltiniams išskirti. 

Reikšminiai žodžiai: šaltinių aklasis atskyrimas, histogramos 
klasterizavimas, spektrogramos analizė, kalbos rekonstravimas, 
maskavimas laiko ir dažnių skalėje.  

 


