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Abstract. This paper addresses the issue of reconstructing and visualizing surfaces from unorganized point sets. These can be 
acquired using different techniques, such as 3D-laser scanning, computerized tomography, magnetic resonance imaging and 
multi-camera imaging. The problem of reconstructing surfaces from their unorganized point sets is common for many diverse 
areas, including computer graphics, computer vision, computational geometry or reverse engineering. The paper presents 
three alternative methods that all use variations in complementary cones to triangulate and reconstruct the tested 3D surfaces. 
The article evaluates and contrasts three alternatives. 

Keywords: unorganized point set, 3D surface reconstruction, Delaunay triangulation, complementary cones. 
 

Introduction 
To reconstruct a 3D object, its surface must be approxi-
mated using a set of 3D sample points (Remondino 2003; 
Pauly et al. 2004). Special devices for sampling surfaces 
such as 3D-laser scanners may be first used to generate 
the sets of the sample points required. 

Data points produced by 3D-laser scanners are fre-
quently unorganized. This implies that the ability to use 
them in 3D applications requires the computation of a 
polygon mesh (usually triangular-shaped) that best ap-
proximates the sampled surface. In turn, this calls for some 
connectivity structure to associate with the point set. 

There are several algorithms for producing a 3D 
mesh from unorganized point sets. These algorithms dif-
fer in the methods employed as well as in their complex-
ity and robustness. Unfortunately, many algorithms often 
fail to reproduce the connectivity (and sometimes even 
the topology) of the original object. 

Hoppe et al. (1992) proposed an algorithm accept-
ing an unorganized point set located on (or in the vicinity 
of) an unknown manifold to produce a simplified surface 
approximating the given manifold. The algorithm esti-
mates a tangent plane at each sample using the k-nearest 
neighbors and uses the distance to the plane of the closest 
point as a signed distance function. Then, the marching-
cubes algorithm is used to approximate the zero set of 
this function by piecewise-linear contours.  

 
 

 
Amenta et al. (1998) introduced CRUST – another useful 
algorithm for reconstructing 3D objects – that was based 
on the Voronoi diagram. It was the first algorithm  
 
to theoretically ensure the topological correctness of the 
reconstructed surface. Eventually, CRUST became a 
theoretical foundation for the whole class of new algo-
rithms (Amenta et al. 2000a, 2000b, 2001). 

By combining the ideas present in the two algo-
rithms above, another method for reconstructing surfaces 
based on coupling the Voronoi diagram with implicit 
functions was born (Boissonnat et al. 2000). The strength 
of this method lies in its ability to reconstruct surfaces 
having arbitrary topology and even using non-uniform 
sampling. 

The Delaunay triangulation along with the Voronoi 
diagram are able to compensate for missing information 
on the geometry of an unorganized set of points provided 
that the sampling rate is adequate throughout the surface. 
One should be cautious, though, that undersampling (i. e. 
inappropriate choice of the sampling rate) tends to cause 
local changes in topology. In turn, those may result in 
holes appearing in reconstruction. 

The Basic CoCone Method 
The Delaunay triangulation is a good approximation of 
well sampled surface S from topological and geometrical 
points of view. However, such triangulation cannot be 
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computed because the restricted Voronoi diagram cannot 
be computed without knowing S (Amenta et al. 2000a). 

The Basic CoCone algorithm approximates the re-
stricted Voronoi diagram and computes a set of candidate 
triangles from all Delaunay triangles. As an output, mani-
fold surface approximating sampled surface S is extrac-
ted. 

Each restricted Voronoi cell p pV S V S= ∩  is al-
most flat if the input sample is sufficiently dense. The 
farthest Voronoi vertex p+ in pV  is called the positive 
pole of sample p and vp = p+ – p is pole vector for p. Pole 
vectors approximate the true normals of surface S at sam-
ple points P. 

In this case, the CoCone of point p is set 
( ){ }3π: , 8p pC y V py= ∈ ∠ ≥pv
��� , i.e. Cp is the comple-

ment of a double cone that is clipped within Vp. This 
double cone has p as the apex, pole vector vp as the axis, 
an opening angle of 3π 8  with the axis and y is the point 
in a Voronoi cell (Amenta et al. 2000a). 

Fig. 1 shows Voronoi cell Vp and positive pole p+. 
The double cone forming CoCone has the apex at point p 
and axis pp+. Vector pp+

�����

approximates surface’s S nor-
mal at point p and Voronoi edge ab intersects CoCone. 
Its dual Delaunay triangulation is a candidate triangle. 

 

Fig. 1. Voronoi cell Vp and positive pole p+  
1 pav. Voronojaus ląstelė Vp ir teigiamas polius p+ 

As an approximation to pV S , CoCones meet all 
Voronoi edges that are intersected by S. By computing all 
triangles dual to the Voronoi edges intersected by Co-
Cones, all restricted Delaunay triangles are obtained. The 
set of these triangles is called candidate triangles T. They 
approximate the given unorganized point set closely to 
surface S. 

Detection of Undersampling 
The CoCone algorithm works nicely when input point set 
P densely samples surface S. In practice, the input often 
undersamples the surface. The CoCone algorithm com-
putes many undesirable triangles near such regions.  

Undersampling is defined as a set where points in P 
do not meet flatness condition stating that the point is 
sampled well if the following conditions are satisfied 
(Dey et al. 2001a): 

− ratio: p pr hρ≤ , 
− normal: ( )with , , α,q p qq p N∀ ∈ ∠ ≤v v  

where { }max :p pr y p y C= − ∈  is the radius of Co-
Cone Cp, ph p p−= −  is the height of Voronoi cell 

pV and a set of { }:p p pN q P C V= ∈ ∩ ≠  is CoCone 
neighbors of p. 

Ratio condition ensures that the Voronoi cell of 
point p is long and narrow along  normal pn

�  of the point. 
Normal condition states that the direction of Voronoi cell 
extent is in phase with the direction of neighboring Vo-
ronoi cells extent. 

Undersampling is detected in two steps. First, all 
points satisfying flatness condition are found. These 
points form set R, whereas others make set B. All points 
in R along with all their CoCone neighbors satisfy the 
ratio and normal conditions. On the second step, all 
points satisfying the ratio condition are located in B. If 
such a point has neighboring CoCone in R and their nor-
mal condition is met, then this point is included in R. The 
remaining points belong to the undersampled region 
(see Fig. 2). 

 

Fig. 2. Undersampling detection 
2 pav. Nepakankamo diskretizavimo aptikimas 

Finally, all triangles of the reconstructed surface, as 
an output of the CoCone algorithm, are verified. If any of 
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these vertices of the triangles lies in the undersampled 
region, such triangle is removed from the reconstructed 
surface leaving holes on it. 

The Tight Cocone Method 
This complex method actually combines several algo-
rithms. The basic CoCone method uses the Delaunay 
triangulation to approximate the surface by its poles. 
Then, the set of candidate triangles T is estimated by 
finding intersections between the CoCones and the edges 
of Voronoi cells. Next, all input points in P are divided 
into well-sampled and poorly-sampled regions applying 
the detection of undersampling. Triangles with vertices 
falling under poorly-sampled regions are then removed 
from T. Finally, the method detects and fills up all the 
holes (see the section titled The Umbrella Filter below) to 
produce a watertight surface. It should be noted that this 
process introduces no additional points, and the triangu-
lated surface is generated by interpolating input sample 
points (Dey et al. 2003). 

The Umbrella Filter 
The structure of the vertices in well-approximated sur-
faces resembles that a topological disk is the so-called 
umbrella. All triangles in the umbrella have a common 
vertex at point p as along with two neighbors that share 
edges pw and pq (Fig. 3). The filter is used to iterate over 
candidate triangles and remove those not included in the 
umbrella. 

 

Fig. 3. Umbrella for point p 3 pav. Taško p skėtis 

 

Fig. 4. Surface boundary detection  
4 pav. Paviršiaus ribos nustatymas 

A topological structure resembling an umbrella is 
also used for detecting the boundaries of the surface, i.e., 
holes in the undersampled regions. For a well-sampled 
surface, every point in 3D reconstruction has its own 
umbrella, as opposed to the case when holes show up 
(Fig. 4). The described method enables the detection of 
such cases and fills up the holes to make surface water-
tight (Amenta et al. 2001; Dey et al. 2003). 

The Super CoCone Method 
For unorganized point sets, reconstruction methods based 
on the Delaunay technique show good results both in 
theory and practice. However, such algorithms are too 
slow and cannot handle large data sets. 

The Supper CoCone Algorithm (Dey et al. 2001b) 
extends the applicability of the CoCone algorithm to 
large data sets by using the divide-and-conquer approach. 
The basic idea behind the algorithm is reconstructing the 
3D surface without computing the entire Voronoi dia-
gram that consumes too much time and memory. 

Instead, a local Voronoi diagram is computed for 
fewer sample points. Let PP ⊂~  be such a subsample, 
where Pp ~

∈ . Such an approach requires satisfying only 
one condition, namely P~ must contain a set of all re-
stricted Voronoi neighbors of p, Rp. Even though this 
ensures the right reconstruction of the surface, determin-
ing set Rp remains a problem without knowing surface S. 
As a remedy, Rp is overestimated by taking a subsample 
that has a cluster of sample points around p. For cluster-
ing, the octree subdivision method is used. 

This method is applied in the following way. First, 
root node D in the octree containing all sample points is 
calculated. Second, the root node is divided recursively 
into eight equal subnodes. Each subnode needs to be di-
vided further if it holds more sample points then the prede-
fined threshold ∆. The procedure eventually concludes 
with the node of the lowest leaf holding a subset of sample 
points, which is smaller than the predefined value ∆. 

Following the application of octree subdivision, the 
lowest adjacent leaf nodes are used for computing the 
Voronoi diagram. The rest of reconstruction is similar to 
the steps used in the CoCone algorithm described above. 

Results 
The algorithms were tested using a 2.8 GHz, 4GB RAM 
PC with Linux OS and 2.6.32 kernel preinstalled. For 
testing purposes, simulated and real data sets were used. 
Experimental data sets vary from simple geometrical 
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shapes: from a mechanical part (Fig. 5 a) to a complex 
shape with high curvature: dental cast (Fig. 6 a). 

Fig. 5 presents the reconstruction results of CoCone 
(Fig. 5 b), Super CoCone (Fig. 5 c) and Tight CoCone 
(Fig. 5 d) algorithms applied to the unorganized point set 
(Fig. 5 a) of the mechanical part. The point set of 
4 100 points was simulated and a small-scale of noise of 
approximately 5 % was added. 

The CoCone algorithm fails to reconstruct some 
sharp edges and in the final reconstruction leaves holes 
even on some planar regions of the surface (Fig. 5 b).  

The Super CoCone algorithm generates results very 
similar to those of the CoCone algorithm. In this specific 
case, the Super CoCone algorithm uses the octree subdi-
vision of 4-leaves nodes. The structure of subdivision is 
clearly seen in Fig. 5 (c) where the reconstruction of a 
different node is presented in a different color. The algo-
rithm leaves holes in the regions where subdivision nodes 
intersect each other. This a cause of the points lack in the 
current set, thus the algorithm has no ability to rejoin 
reconstructed sub regions. An answer to this problem can 
be the increment of sample points or a deeper subdivision 
of the point set or both. 

The tight CoCone algorithm was found to perform 
better with the current point set than the other algorithms 
and produced a water-tight surface. 

Fig. 6 presents the results of dental cast reconstruc-
tion from the unorganized point set. This point set contains 

more than 300 K points. The shape of the sampled object is 
complex due to the curvature of the objects and none of the 
algorithms was able to gain satisfactory results. This prob-
lem is more of the point set collection hardware nature than 
reconstruction algorithms themselves. 

Reconstruction times appear in Table 1. For a rela-
tively small number of points (approximately 1 to 
20 000) in an unorganized set, the results across all algo-
rithms differ only in a few seconds. As the number of 
points in a set is increased, differences in the performance 
of algorithms become more evident. For example, during 
the reconstruction of the surface from 200 000 points, the 
Super CoCone algorithm was 6–7 times faster than the 
others. An interesting point is that this algorithm proved 
its ability to process very large data sets (on the order of 
several million) in a relatively moderate time. For in-
stance, it only took more than 14 minutes to complete the 
reconstruction of a set containing one million points. 
Table 1. Time for surface reconstruction  
1 lentelė. Paviršiaus rekonstravimo laikas 

Points CoCone Super CoCone Tight Cocone 
 5 000   3.6 s   2.3 s   3.8 s 
 7 500   5.3 s   3.9 s   5.6 s 
 10 000   8.6 s   6.4 s   9.7 s 
 15 000 11.1 s   8.7 s 12.3 s 
 200 000 57.9 s 11.8 s 70.2 s 
 1 000 000 – 14 min 33 s – 

a)  b)  

        c)  d) 

        
Fig. 5. The results of the point set reconstruction of the 
mechanical part using  (a) CoCone (b), Super CoCone (c) and Tight CoCone (d) algorithms 
5 pav. Mechaninės detalės nestruktūrizuoto taškų rinkinio (a) 
rekonstrukcijos rezultatai taikant dvikūgio (b), super dvikū-
gio (c) ir nepralaidaus dvikūgio (d) algoritmus 

a)   b) 

        c)  b) 

        
Fig. 6. The results of the point set  reconstruction of the dental 
cast using (a) CoCone (b), Super CoCone (c), and tight CoCone (d) algorithms 
6 pav. Dantų formos nestruktūrizuoto taškų rinkinio (a) 
rekonstrukcijos rezultatai taikant dvikūgio (b), super dvikūgio 
(c) ir nepralaidaus dvikūgio (d) algoritmus 
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Conclusions 
This paper described three alternative algorithms used for 
the reconstruction of 3D surfaces from unorganized point 
sets. These were titled as CoCone, Super CoCone and 
Tight CoCone. The evaluation of the algorithms revealed 
the following observations.  
1. All alternatives discussed above theoretically ensured 

a topologically correct reconstruction of surfaces and 
provided relatively dense spacing between input point 
samples. 

2. The CoCone algorithm failed to reconstruct sharp ed-
ges of the surface tested where a sharp edge was con-
sidered to be made of adjacent faces with an angle of 
π 2  or smaller between them. 

3. The Super CoCone algorithm is the extension of the 
conventional CoCone algorithm suitable for large data 
sets. The Super CoCone algorithm proved to be quite 
efficient with large data sets. However, when tested 
on smaller data sets (on the order of a few thousand 
points), the algorithm could not reconstruct the sur-
face at the intersections of subdivided regions. 

4. The Tight CoCone algorithm managed to reconstruct 
a watertight surface, and this was not affected by the 
sampling rate. It should be noted, however, that the 
correctness of a geometrical approximation for the 
surface tends to deteriorate dramatically if sample 
points are spaced too far apart. 

5. For sparse sets of unorganized points, reconstruction 
times for all algorithms considered differed by only in 
a few seconds. Differences became apparent for larger 
data sets. The Super CoCone algorithm was found to 
be 6–7 times faster than the other two. Also, it was 
only the Super CoCone algorithm that was able to re-
construct a large set involving one million points. 
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PAVIRŠIŲ REKONSTRUKCIJOS IŠ NESTRUKTŪRIZUOTŲ TAŠKŲ RINKINIŲ METODŲ APŽVALGA 
V. Matiukas 
Santrauka 
Šiame straipsnyje aprašomi ir lyginami trys metodai, skirti trima-
čių paviršių rekonstrukcijai iš nestruktūrizuotų jų taškų rinkinių. 
Paviršiaus aproksimacijai naudojamas tinklelis, sudarytas iš įvai-
rių dvikūgių: paprasto, nepralaidžiojo ir superdvikūgio. Eksperi-
mentiškai nustatyta, kad visi trys metodai tinka kokybiškai 
paviršiaus rekonstrukcijai, tik prieš tai reikia sudaryti pakankamai 
tankų pirminių taškų rinkinį. Be to, nustatyta, jog rekonstrukcijos 
nepralaidžiuoju dvikūgiu metodas tinka visiškai uždariems pavir-
šiams, o rekonstrukcijos superdvikūgiu metodas savo sparta pra-
noksta kitus du metodus net 6–7 kartais. Šis metodas taip pat 
leidžia rekonstruoti paviršių ir esant itin dideliam (iki milijono) 
pirminių taškų rinkiniui. 
Reikšminiai žodžiai: nestruktūrizuotas taškų rinkinys, trimačio 
paviršiaus rekonstrukcija, Delaunay trianguliacija, dvikūgis. 

 


