

MOKSLAS – LIETUVOS ATEITIS SCIENCE – FUTURE OF LITHUANIA ISSN 2029-2341 / eISSN 2029-2252 http://www.mla.vgtu.lt

2017 9(5): 507-519

https://doi.org/10.3846/mla.2017.1079

## LENKIAMŲJŲ GELŽBETONINIŲ ELEMENTŲ, SUSTIPRINTŲ PLUOŠTU ARMUOTU KOMPOZITU, LAIKOMOSIOS GALIOS SKAIČIAVIMAS PAGAL KRITINĮ PLYŠIO AUKŠTĮ

Justas ŠLAITAS

Vilniaus Gedimino technikos universitetas, Vilnius, Lietuva El. paštas justas.slaitas@vgtu.lt

Santrauka. Šiame straipsnyje nagrinėjamas lenkiamųjų gelžbetoninių elementų, sustiprintų pluoštu armuotu kompozitu, būklės vertinimas irimo etape. Pasiūlytas universalus gelžbetoninių konstrukcijų, sustiprintų skirtingų rūšių pluoštu armuotu kompozitu, laikomosios galios vertinimo metodas pagal apskaičiuotą ribinį statmenojo pjūvio plyšio aukštį. Šiame darbe patvirtinama trikampės betono gniuždomosios zonos diagramos taikymo sijų laikomajai galiai skaičiuoti be tempiamojo betono virš plyšio vertinimo hipotezė. Nustatytas ryšys tarp plyšio aukščio ir pluoštu armuoto kompozito įtempių ir deformacijų, kuris leidžia spręsti apie likusį konstrukcijos laikomosios galios rezervą. Skaičiavimo rezultatai patvirtinti skirtingų autorių eksperimentiniais 73 gelžbetoninių sijų, sustiprintų anglies pluošto kompozito (CFRP) ir stiklo pluošto kompozito (GFRP) lakštais, juostomis, strypais, tyrimais. Taip pat pasiūlytos stiprinimo pluoštu armuotu kompozitu taikymo ribos.

Reikšminiai žodžiai: gelžbetonis, pluoštu armuotas kompozitas, laikomoji galia, betono irimas, plyšio aukštis.

#### Įvadas

Lenkiamųjų gelžbetoninių elementų irimas statmenajame pjūvyje prasideda, kai tempiamosios armatūros įtempiai pasiekia takumo ribą. Konstrukcija visiškai suyra, kai iki galo išnaudojamas gniuždomosios zonos betono stipris. Gelžbetoninių sijų ir plokščių irimo trukmė priklauso nuo fizinių ir mechaninių betono ir armatūros savybių. Todėl statmenojo pjūvio laikomosios galios analitinių ir eksperimentinių tyrimų dėmesys koncentruojamas į betono gniuždymo įtempių ir deformacijų priklausomybę bei gniuždymo diagramos pobūdį. Irimo mechanikos mokslas leidžia analizuoti lenkiamųjų gelžbetoninių elementų irimo pradžią pagal kritinius statmenojo pjūvio plyšių parametrus, kas yra įtempių būvio pasekmė (kai tempiamosios armatūros įtempiai pasiekė takumo ribą) (Jokūbaitis *et al.* 2013).

Šiame straipsnyje nagrinėjamas lenkiamųjų gelžbetoninių elementų, sustiprintų pluoštu armuotu kompozitu, būklės vertinimas irimo etape. Pasiūlytas lenkiamųjų gelžbetoninių elementų, sustiprintų skirtingų rūšių pluoštu armuotu kompozitu, statmenojo pjūvio laikomosios galios skaičiavimo metodas, paremtas kietųjų kūnų irimo mechanika. Skaičiavimo rezultatai palyginti su skirtingų autorių eksperimentiniais 73 gelžbetoninių sijų tyrimais. I. A. Sharaky ir kiti (Sharaky *et al.* 2014) nagrinėjo gelžbetonines sijas, sustiprintas anglies pluošto kompozito (CFRP) ir stiklo pluošto kompozito (GFRP) strypais, epoksidiniais klijais, įklijuotais į griovelius, išpjautus betono paviršiuje (NSM tvirtinimo metodas), kitame tyrime (Sharaky et al. 2015) bandymų programa papildyta tokiu pat metodu priklijuotomis CFRP juostomis, taip pat ištirta neviso kompozitinės medžiagos priklijavimo įtaka. R. El-Hacha ir M. Gaafar (El-Hacha, Gaafar 2011) ištyrė NSM metodu pritvirtintus itemptuosius CFRP strypus, inkaruotus metalinėmis plokštelėmis, nustatė skirtingo išankstinio įtempimo lygio įtaką sijos darbui. J. A. O. Barros ir A. S. Fortes (Barros, Fortes 2005) nagrinėjo stiprinimo CFRP juostomis NSM metodu itaka sijos darbui, lyginant su nesustiprintomis sijomis. W.-T. Jung ir kiti (Jung et al. 2005) nustatė skersinių griovelių, užpildytų epoksidine derva, inkaravimo metodo įtaką gelžbetoninių sijų, sustiprintų CFRP strypais ir juostomis, pritvirtintomis NSM metodu, darbui. A. A. Shukri ir kiti (Shukri et al. 2015) nagrinėjo NSM metodu pritvirtintų CFRP strypų deformacijas. M. Rezazadeh ir kiti (Rezazadeh et al. 2014) pristatė naują NSM metodu tvirtinamų CFRP juostų įtempimo būdą, kurį galima pritaikyti praktikoje trumpoms gelžbetoninėms sijoms stiprinti. H. Peng ir kiti (Peng et al. 2014) atliko itemptųjų anglies pluošto juostų, pritvirtintų NSM metodu, ir lakštų, priklijuotų ant betono paviršiaus (EBR metodas), elgsenos tyrimą. S.-K. Woo ir kiti (Woo et al. 2008) ištyrė

<sup>2017 ©</sup> Straipsnio autoriai. Leidėjas VGTU leidykla "Technika".

Šis straipsnis yra atvirosios prieigos straipsnis, turintis Kūrybinių bendrijų (*Creative Commons*) licenciją (CC BY-NC 4.0), kuri leidžia neribotą straipsnio ar jo dalių panaudą su privaloma sąlyga nurodyti autorių ir pirminį šaltinį. Straipsnis ar jo dalys negali būti naudojami komerciniams tikslams.

daug gelžbetoninių sijų, sustiprintų įtemptaisiais CFRP lakštais, pritvirtintais EBR metodu, tyrimams panaudojo sijas, kurių plotis didesnis už aukštį.

Šio tyrimo pagrindinis dėmesys skiriamas statmenojo pjūvio ribinio plyšio aukščio ir pluoštu armuoto kompozito įtempių ir deformacijų būviui nustatyti. Remiantis tyrimo rezultatais, pasiūlytos rekomenduojamos stiprinimo pluoštu armuotu kompozitu ribos.

## Lenkiamųjų gelžbetoninių elementų, sustiprintų pluoštu armuotu kompozitu, laikomosios galios skaičiavimas statmenajame pjūvyje

## Gelžbetoninių elementų laikomoji galia

Laikomoji galia skaičiuojama, kai tempiamosios armatūros įtempiai artimi takumo ribai, taikant trikampę gniuždomosios zonos diagramą. Skaičiuojant nevertinamas



1 pav. Sijos įtempių būvis, kai tempiamosios armatūros įtempiai priartėja prie takumo ribos

Fig. 1. Estimated state of stress when tensile reinforcement reaches yield strength



tempiamojo betono virš plyšio darbas, tai kompensuojama betono plastinėmis deformacijomis ir gniuždomosios armatūros neįvertinimu. Remiantis šiomis prielaidomis, lenkiamosios gelžbetoninės sijos laikomoji galia iš vidinių ir išorinių jėgų pusiausvyros sąlygos yra (1 pav.) (Jokūbaitis *et al.* 2013):

$$M_{u} \cong \frac{f_{y} A_{s1} \left( h_{cr. \lim} + 2h - 3d_{1} \right)}{3}.$$
 (1)

Lenkiamųjų gelžbetoninių elementų laikomosios galios skaičiavimo rezultatai, remiantis EC2 (Eurocode 2), ACI (ACI 318-14), H. Rüsch (Rüsch 1960), I. Židonio (Židonis 2007a, 2007b, 2010), V. Jokūbaičio (Jokūbaitis, Juknevičius 2013; Jokūbaitis *et al.* 2013) metodikomis, yra panašūs. Tai reiškia, kad vidinių jėgų peties ir gniuždomojo betono atstojamųjų sandaugos, naudojant trikampę ir kreivinę betono gniuždomosios zonos diagramas, yra panašios (2 pav.) (plačiau Slaitas *et al.* 2017).

Daroma prielaida, kad galima naudoti trikampę gniuždomosios zonos diagramą, kai tempiamosios armatūros įtempiai priartėja prie takumo ribos. Taigi galime apskaičiuoti vidines jėgas ir iš pusiausvyros sąlygų turėsime:

$$F_2 = A_{s1}f_y - A_{s2}\sigma_{s2},$$
 (2)

$$(A_{s1}f_y - A_{s2}\sigma_{s2})z_2 \approx A_{s1}f_y \frac{(h_{cr.lim} + 2h - 3d_1)}{3}.$$
 (3)

Iš (3) formulės išsireiškiame kritinį plyšio aukštį:

$$h_{cr.\text{lim}} \approx \frac{\left(A_{s1}f_y - A_{s2}\sigma_{s2}\right)3z_2}{A_{s1}f_y} - 2h + 3d_1.$$
(4)

(4) lygtyje nustatytas ryšys tarp ribinio plyšio aukščio ir vidinių jėgų peties. Vidinių jėgų petys gali būti nustatytas bet kuriuo kreivinės ar jai ekvivalentinės stačiakampės betono gniuždomosios zonos diagramos taikymo metodu.



2 pav. Vidinės jėgos: a) naudojant trikampę betono gniuždomos zonos diagramą;b) naudojant kreivinę gniuždomos zonos diagramą

Fig. 2. Internal forces: a) using triangular concrete's compressive zone stress diagram; b) using curved concrete's compressive zone stress diagram Jeigu elemento gniuždomoji zona nearmuota arba nevertinama gniuždomoji armatūra, tai:

$$h_{cr,\lim} \approx 3z_2 - 2h + 3d_1. \tag{5}$$

Pagal (5) lygtį apskaičiuojamas kritinis plyšio aukštis taikant EC2:

$$h_{cr.\lim.d} \approx 3h - 3d_1 - 3\frac{A_{s1}f_y}{2\eta f_{cm}b} - 2h + 3d_1 = h - 3\frac{A_{s1}f_y}{2\eta f_{cm}b}.$$
(6)

(6) lygties skaičiavimo rezultatus įstatę į (1) lygtį gausime lenkiamojo gelžbetoninio elemento laikomąją galią statmenajame pjūvyje.

# Gelžbetoninių elementų, sustiprintų pluoštu armuotu kompozitu, laikomoji galia

Ta pati metodika gali būti pritaikyta lenkiamiesiems gelžbetoniniams elementams, sustiprintiems pluoštu armuotu kompozitu, tik skaičiuojant atsiranda dar vienas narys. Nagrinėjami du skirtingi stiprinimo būdai:

- išoriškai tvirtinamas pluoštu armuotas kompozitas EBR (3 pav.);
- pluoštu armuotas kompozitas tvirtinamas į griovelius NSM (4 pav.).

Šiuo atveju (6) lygtis būtų tokia:

$$h_{cr.\lim,i} \approx h - 3 \frac{\left(A_{s1}f_y + A_f \sigma_{f,i-1}\right)}{2\eta f_{cm} b},\tag{7}$$

čia  $A_f$  – pluoštu armuoto kompozito skerspjūvio plotas;  $\sigma_{f,i-1}$  – įtempiai pluoštu armuotame kompozite, nustatyti i - 1 iteracijos metu, pirmai iteracijai jie lygūs ribiniams įtempiams  $\sigma_{f,0} = f_f$ .

Toliau galime apskaičiuoti statmenojo pjūvio laikomąją galią pagal šią lygtį:

$$M_{calc.i} \cong \frac{f_y A_{s1} \left( h_{cr.\lim i} + 2h - 3d_1 \right)}{3} + \frac{\sigma_{f.i} A_f \left( 4h + 2h_{cr.\lim i} + 3t_f \right)}{6}.$$
(8)

Kitas stiprinimo metodas, kai pluoštu armuotas kompozitas tvirtinamas į griovelius (NSM) (4 pav.).

Tada (8) lygtis būtų tokia:

$$M_{calc.i} \cong \frac{f_y A_{s1} (h_{cr.lim} + 2h - 3d_1)}{3} + \frac{\sigma_{f.i} A_f (4h + 2h_{cr.lim} - 3d_g)}{6}.$$
 (9)

Įtempiai pluoštu armuotame kompozite kiekvienos iteracijos metu gali būti nustatyti pagal Huko dėsnį:

$$\sigma_{f,i} = E_f \cdot \varepsilon_{f,i}. \tag{10}$$

Bet  $\sigma_{fi} \leq f_f$  čia  $E_f$  – pluoštu armuoto kompozito tamprumo modulis;  $\varepsilon_{fi}$  – pluoštu armuoto kompozito deformacija, nustatyta *i*-tosios iteracijos metu.

Jeigu pagal (10) lygtį gauname  $\sigma_{f,i} < f_{f}$  tai reiškia, kad konstrukcijos irimo rezultatas turėtų būti gniuždomojo betono suirimas, ir jeigu  $\sigma_{f,i} \ge f_{f}$  tai konstrukcijos irimo rezultatas turėtų būti pluoštu armuoto kompozito suirimas.

Pluoštu armuoto kompozito *i*-tosios iteracijos deformacijos gali būti nustatytos iš ribinio deformacijų būvio elemente, irimo etape (5 pav.):

$$\varepsilon_{f.i} = \varepsilon_{fe.i} + \varepsilon_{p}, \tag{11}$$

čia  $\varepsilon_{fe,i}$  – pluoštu sustiprinto kompozito *i*-tosios iteracijos deformacija, sukelta išorinių jėgų;  $\varepsilon_p$  – pluoštu sustiprinto kompozito deformacija, sukelta išankstinio įtempimo jėgos.

Ribinė betono deformacija  $\varepsilon_{cu}$  pagal EC2 imama 3,5 ‰ betonui, kurio stipris  $f_{ck} < 50$  MPa ir  $\varepsilon_{cu} = 2,8 + 27 \left(\frac{98 - f_{cm}}{100}\right)^4$ , kai  $f_{ck} \ge 50$  MPa.



- 3 pav. Sijos, sustiprintos išoriškai tvirtinamu pluoštu armuotu kompozitu, įtempių būvis
- Fig. 3. Estimated state of stress when tensile reinforcement reaches yield strength for RC beam strengthened with externally bonded FRP



4 pav. Sijos, sustiprintos į griovelius tvirtinamu pluoštu armuotu kompozitu, įtempių būvis

Fig. 4. Estimated state of stress for RC beam strengthened with near surface mounted FRP



5 pav. Deformacijų būvis irimo etape: a) kai pluoštu armuotas kompozitas tvirtinamas ant betono paviršiaus (EBR); b) kai pluoštu armuotas kompozitas grioveliuose (NSM)
Fig. 5. State of strain at fracture stage: a) FRP is on the surface of concrete (EBR);
b) FRP is in the grooves (NSM)

## Eksperimentinių ir skaičiuotinių duomenų analizė

Teorijai patvirtinti eksperimentiškai iš skirtingų tyrimų buvo atrinktos skirtingos gelžbetoninės sijos, sustiprintos anglies pluoštu armuoto kompozito (CFRP) ir stiklo pluoštu armuoto kompozito (GFRP) lakštais, juostomis ir strypais. Visos sijos buvo apkrautos dviem koncentruotomis apkrovomis (6 pav.).

1 lentelėje pateikti pagrindiniai sijų duomenys, 2 lentelėje pateikti sijų stiprinimo duomenys, 3 lentelėje pateikti pagrindiniai rezultatai.



6 pav. Principinė sijos apkrovimo schema (a); pluoštu armuoto kompozito tvirtinimo schema (EBR metodas) (b); pluoštu armuoto kompozito tvirtinimo schema (NSM metodas) (c)

Fig. 6. Principle scheme of beam loading (a); principle scheme of FRP mounting (EBR) (b); principle scheme of FRP mounting (NSM) (c)

## 1 lentelė. Pagrindiniai sijų duomenys

|          | •    |           |   |       | 2        |         |  |
|----------|------|-----------|---|-------|----------|---------|--|
| Table 1. | Base | parameter | s | of th | e tested | d beams |  |

| Sijos<br>Nr. | Literatūros<br>šaltinis      | Sijos ID          | b, m | <i>h</i> , m | <i>L<sub>s</sub></i> , m | <i>L</i> , m | $f_{cm}$ , MPa | ρ <sub>s1</sub> , % | σ <sub>y</sub> , MPa | E <sub>s1</sub> , GPa |
|--------------|------------------------------|-------------------|------|--------------|--------------------------|--------------|----------------|---------------------|----------------------|-----------------------|
| 1            | Peng <i>et al.</i> 2014      | US                | 0,15 | 0,35         | 1,20                     | 3,30         | 37,60          | 0,85                | 400                  | 200                   |
| 2            | Peng <i>et al.</i> 2014      | RS-2N20           | 0,15 | 0,35         | 1,20                     | 3,30         | 32,10          | 0,85                | 400                  | 200                   |
| 3            | Peng <i>et al.</i> 2014      | PRS-EB            | 0,15 | 0,35         | 1,20                     | 3,30         | 26,60          | 0,85                | 400                  | 200                   |
| 4            | Peng <i>et al.</i> 2014      | PRS-2N20          | 0,15 | 0,35         | 1,20                     | 3,30         | 30,40          | 0,85                | 400                  | 200                   |
| 5            | Peng <i>et al.</i> 2014      | PRS-1N45          | 0,15 | 0,35         | 1,20                     | 3,30         | 35,50          | 0,85                | 400                  | 200                   |
| 6            | Peng <i>et al.</i> 2014      | PRS2N20-<br>BL330 | 0,15 | 0,35         | 1,20                     | 3,30         | 60,80          | 0,85                | 400                  | 200                   |
| 7            | Peng <i>et al.</i> 2014      | PRS-2N20-<br>AN   | 0,15 | 0,35         | 1,20                     | 3,30         | 59,50          | 0,85                | 400                  | 200                   |
| 8            | Jung <i>et al.</i><br>2005   | Control           | 0,20 | 0,30         | 1,05                     | 3,00         | 31,30          | 0,40                | 426                  | 200                   |
| 9            | Jung <i>et al.</i><br>2005   | SH-BOND           | 0,20 | 0,30         | 1,05                     | 3,00         | 31,30          | 0,40                | 426                  | 200                   |
| 10           | Jung <i>et al.</i><br>2005   | CPL-50-<br>BOND   | 0,20 | 0,30         | 1,05                     | 3,00         | 31,30          | 0,40                | 426                  | 200                   |
| 11           | Jung <i>et al.</i><br>2005   | CRD-NSM           | 0,20 | 0,30         | 1,05                     | 3,00         | 31,30          | 0,40                | 426                  | 200                   |
| 12           | Jung <i>et al.</i><br>2005   | NSM-PL-25         | 0,20 | 0,30         | 1,05                     | 3,00         | 31,30          | 0,40                | 426                  | 200                   |
| 13           | Jung <i>et al.</i><br>2005   | NSM-PL-15         | 0,20 | 0,30         | 1,05                     | 3,00         | 31,30          | 0,40                | 426                  | 200                   |
| 14           | Jung <i>et al.</i><br>2005   | ROD-MI-20         | 0,20 | 0,30         | 1,05                     | 3,00         | 31,30          | 0,40                | 426                  | 200                   |
| 15           | Jung <i>et al.</i><br>2005   | PL-MI-20          | 0,20 | 0,30         | 1,05                     | 3,00         | 31,30          | 0,40                | 426                  | 200                   |
| 16           | Shukri <i>et al.</i><br>2015 | СВ                | 0,13 | 0,25         | 0,75                     | 2,00         | 35,63          | 0,83                | 520                  | 200                   |
| 17           | Shukri <i>et al.</i><br>2015 | A1                | 0,13 | 0,25         | 0,75                     | 2,00         | 35,63          | 0,83                | 520                  | 200                   |
| 18           | Shukri <i>et al.</i><br>2015 | A2                | 0,13 | 0,25         | 0,75                     | 2,00         | 35,63          | 0,83                | 520                  | 200                   |
| 19           | El-Hacha,<br>Gaafar 2011     | B00               | 0,20 | 0,40         | 2,08                     | 5,00         | 45,50          | 0,77                | 475                  | 200                   |
| 20           | El-Hacha,<br>Gaafar 2011     | B2-0%             | 0,20 | 0,40         | 2,08                     | 5,00         | 36,40          | 0,77                | 475                  | 200                   |
| 21           | El-Hacha,<br>Gaafar 2011     | B2-20%            | 0,20 | 0,40         | 2,08                     | 5,00         | 40,70          | 0,77                | 475                  | 200                   |
| 22           | El-Hacha,<br>Gaafar 2011     | B2-40%            | 0,20 | 0,40         | 2,08                     | 5,00         | 40,00          | 0,77                | 475                  | 200                   |
| 23           | El-Hacha,<br>Gaafar 2011     | B2-60%            | 0,20 | 0,40         | 2,08                     | 5,00         | 36,00          | 0,77                | 475                  | 200                   |
| 24           | Barros,<br>Fortes 2005       | V2R2              | 0,10 | 0,18         | 0,50                     | 1,50         | 46,10          | 0,54                | 730                  | 200                   |
| 25           | Barros,<br>Fortes 2005       | V3R2              | 0,10 | 0,18         | 0,50                     | 1,50         | 46,10          | 0,69                | 730                  | 200                   |
| 26           | Barros,<br>Fortes 2005       | V4R3              | 0,10 | 0,18         | 0,50                     | 1,50         | 46,10          | 0,94                | 730                  | 200                   |

1 lentelės tęsinys

| Sijos<br>Nr. | Literatūros<br>šaltinis    | Sijos ID            | <i>b</i> , m | <i>h</i> , m | <i>L<sub>s</sub></i> , m | <i>L</i> , m | $f_{cm}$ , MPa | ρ <sub>s1</sub> , % | σ <sub>y</sub> , MPa | <i>E</i> <sub><i>s1</i></sub> , GPa |
|--------------|----------------------------|---------------------|--------------|--------------|--------------------------|--------------|----------------|---------------------|----------------------|-------------------------------------|
| 27           | Rezazadeh<br>et al. 2014   | Control             | 0,15         | 0,30         | 0,90                     | 2,20         | 32,20          | 0,39                | 585                  | 208                                 |
| 28           | Rezazadeh et al. 2014      | Non<br>prestressed  | 0,15         | 0,30         | 0,90                     | 2,20         | 32,20          | 0,39                | 585                  | 208                                 |
| 29           | Rezazadeh et al. 2014      | 20 %<br>prestressed | 0,15         | 0,30         | 0,90                     | 2,20         | 32,20          | 0,39                | 585                  | 208                                 |
| 30           | Rezazadeh et al. 2014      | 30 %<br>prestressed | 0,15         | 0,30         | 0,90                     | 2,20         | 32,20          | 0,39                | 585                  | 208                                 |
| 31           | Rezazadeh et al. 2014      | 40 %<br>prestressed | 0,15         | 0,30         | 0,90                     | 2,20         | 32,20          | 0,39                | 585                  | 208                                 |
| 32           | Sharaky <i>et al.</i> 2014 | СВ                  | 0,16         | 0,28         | 0,80                     | 2,40         | 32,40          | 0,58                | 545                  | 205                                 |
| 33           | Sharaky <i>et al.</i> 2014 | LB1C1               | 0,16         | 0,28         | 0,80                     | 2,40         | 32,40          | 0,58                | 545                  | 205                                 |
| 34           | Sharaky <i>et al.</i> 2014 | LB1G1               | 0,16         | 0,28         | 0,80                     | 2,40         | 32,40          | 0,58                | 545                  | 205                                 |
| 35           | Sharaky <i>et al.</i> 2014 | LB2C1               | 0,16         | 0,28         | 0,80                     | 2,40         | 32,40          | 0,58                | 545                  | 205                                 |
| 36           | Sharaky <i>et al.</i> 2014 | LB2G1               | 0,16         | 0,28         | 0,80                     | 2,40         | 32,40          | 0,58                | 545                  | 205                                 |
| 37           | Sharaky <i>et al.</i> 2014 | LA2C1               | 0,16         | 0,28         | 0,80                     | 2,40         | 32,40          | 0,58                | 545                  | 205                                 |
| 38           | Sharaky <i>et al.</i> 2014 | LA2G1               | 0,16         | 0,28         | 0,80                     | 2,40         | 32,40          | 0,58                | 545                  | 205                                 |
| 39           | Sharaky <i>et al.</i> 2014 | LB1G2               | 0,16         | 0,28         | 0,80                     | 2,40         | 32,40          | 0,58                | 545                  | 205                                 |
| 40           | Sharaky <i>et al.</i> 2015 | СВ                  | 0,16         | 0,28         | 0,80                     | 2,40         | 30,50          | 0,58                | 540                  | 200                                 |
| 41           | Sharaky <i>et al.</i> 2015 | S2C1                | 0,16         | 0,28         | 0,80                     | 2,40         | 30,50          | 0,58                | 540                  | 200                                 |
| 42           | Sharaky <i>et al.</i> 2015 | M2C1                | 0,16         | 0,28         | 0,80                     | 2,40         | 30,50          | 0,58                | 540                  | 200                                 |
| 43           | Sharaky <i>et al.</i> 2015 | M2C1ES              | 0,16         | 0,28         | 0,80                     | 2,40         | 30,50          | 0,58                | 540                  | 200                                 |
| 44           | Sharaky <i>et al.</i> 2015 | F2C1                | 0,16         | 0,28         | 0,80                     | 2,40         | 30,50          | 0,58                | 540                  | 200                                 |
| 45           | Sharaky <i>et al.</i> 2015 | M2S1                | 0,16         | 0,28         | 0,80                     | 2,40         | 30,50          | 0,58                | 540                  | 200                                 |
| 46           | Sharaky <i>et al.</i> 2015 | F2S1                | 0,16         | 0,28         | 0,80                     | 2,40         | 30,50          | 0,58                | 540                  | 200                                 |
| 47           | Sharaky <i>et al.</i> 2015 | S2G1                | 0,16         | 0,28         | 0,80                     | 2,40         | 30,50          | 0,58                | 540                  | 200                                 |
| 48           | Sharaky <i>et al.</i> 2015 | M2G1                | 0,16         | 0,28         | 0,80                     | 2,40         | 30,50          | 0,58                | 540                  | 200                                 |
| 49           | Sharaky <i>et al.</i> 2015 | F2G1                | 0,16         | 0,28         | 0,80                     | 2,40         | 30,50          | 0,58                | 540                  | 200                                 |
| 50           | Sharaky <i>et al.</i> 2015 | M1G2                | 0,16         | 0,28         | 0,80                     | 2,40         | 30,50          | 0,58                | 540                  | 200                                 |
| 51           | Sharaky <i>et al.</i> 2015 | M1G2T               | 0,16         | 0,28         | 0,80                     | 2,40         | 30,50          | 0,58                | 540                  | 200                                 |
| 52           | Sharaky <i>et al.</i> 2015 | F1G2                | 0,16         | 0,28         | 0,80                     | 2,40         | 30,50          | 0,58                | 540                  | 200                                 |
| 53           | Sharaky <i>et al.</i> 2015 | F1G2T               | 0,16         | 0,28         | 0,80                     | 2,40         | 30,50          | 0,58                | 540                  | 200                                 |

1 lentelės pabaiga

| Sijos<br>Nr. | Literatūros<br>šaltinis   | Sijos ID | b, m | <i>h</i> , m | <i>L<sub>s</sub></i> , m | <i>L</i> , m | $f_{cm}$ , MPa | ρ <sub>s1</sub> , % | σ <sub>y</sub> , MPa | <i>E</i> <sub><i>sl</i></sub> , GPa |
|--------------|---------------------------|----------|------|--------------|--------------------------|--------------|----------------|---------------------|----------------------|-------------------------------------|
| 54           | Woo <i>et al.</i><br>2008 | MU-III   | 0,40 | 0,22         | 1,20                     | 3,00         | 26,40          | 0,82                | 476,2                | 200                                 |
| 55           | Woo <i>et al.</i><br>2008 | M0-III   | 0,40 | 0,22         | 1,20                     | 3,00         | 26,40          | 0,82                | 476,2                | 200                                 |
| 56           | Woo <i>et al.</i><br>2008 | M4-III   | 0,40 | 0,22         | 1,20                     | 3,00         | 26,40          | 0,82                | 476,2                | 200                                 |
| 57           | Woo <i>et al.</i><br>2008 | M6-III   | 0,40 | 0,22         | 1,20                     | 3,00         | 26,40          | 0,82                | 476,2                | 200                                 |
| 58           | Woo <i>et al.</i><br>2008 | M8-III   | 0,40 | 0,22         | 1,20                     | 3,00         | 26,40          | 0,82                | 476,2                | 200                                 |
| 59           | Woo <i>et al.</i><br>2008 | M4-I     | 0,40 | 0,22         | 1,20                     | 3,00         | 26,40          | 0,29                | 500,7                | 200                                 |
| 60           | Woo <i>et al.</i><br>2008 | M6-I     | 0,40 | 0,22         | 1,20                     | 3,00         | 26,40          | 0,29                | 500,7                | 200                                 |
| 61           | Woo <i>et al.</i><br>2008 | M8-I     | 0,40 | 0,22         | 1,20                     | 3,00         | 26,40          | 0,29                | 500,7                | 200                                 |
| 62           | Woo <i>et al.</i><br>2008 | M6-II    | 0,40 | 0,22         | 1,20                     | 3,00         | 26,40          | 0,52                | 498,7                | 200                                 |
| 63           | Woo <i>et al.</i><br>2008 | M8-II    | 0,40 | 0,22         | 1,20                     | 3,00         | 26,40          | 0,52                | 498,7                | 200                                 |
| 64           | Woo <i>et al.</i><br>2008 | M6-IV    | 0,40 | 0,22         | 1,20                     | 3,00         | 26,40          | 1,19                | 465,8                | 200                                 |
| 65           | Woo <i>et al.</i><br>2008 | M8-IV    | 0,40 | 0,22         | 1,20                     | 3,00         | 26,40          | 1,19                | 465,8                | 200                                 |
| 66           | Woo <i>et al.</i><br>2008 | L6-III   | 0,40 | 0,22         | 1,20                     | 3,00         | 20,60          | 0,82                | 476,2                | 200                                 |
| 67           | Woo <i>et al.</i><br>2008 | L8-III   | 0,40 | 0,22         | 1,20                     | 3,00         | 20,60          | 0,82                | 476,2                | 200                                 |
| 68           | Woo <i>et al.</i><br>2008 | H6-III   | 0,40 | 0,22         | 1,20                     | 3,00         | 35,60          | 0,82                | 476,2                | 200                                 |
| 69           | Woo <i>et al.</i><br>2008 | H8-III   | 0,40 | 0,22         | 1,20                     | 3,00         | 35,60          | 0,82                | 476,2                | 200                                 |
| 70           | Woo <i>et al.</i><br>2008 | U7-I     | 0,40 | 0,22         | 1,20                     | 3,00         | 44,10          | 0,29                | 500,7                | 200                                 |
| 71           | Woo <i>et al.</i> 2008    | U7-II    | 0,40 | 0,22         | 1,20                     | 3,00         | 44,10          | 0,52                | 498,7                | 200                                 |
| 72           | Woo <i>et al.</i><br>2008 | U7-III   | 0,40 | 0,22         | 1,20                     | 3,00         | 44,10          | 0,82                | 476,2                | 200                                 |
| 73           | Woo <i>et al.</i><br>2008 | U7-IV    | 0,40 | 0,22         | 1,20                     | 3,00         | 44,10          | 1,19                | 465,8                | 200                                 |

## 2 lentelė. Stiprinimo parametrai

Table 2. Strengthening parameters

| Sijos Nr. | FRP rūšys      | $A_{f}$<br>mm <sup>2</sup> | $f_{f}$ MPa | E <sub>1</sub> , GPa | $\sigma_{p}$ , MPa | Stiprinimo<br>būdas | Inkaravimas |
|-----------|----------------|----------------------------|-------------|----------------------|--------------------|---------------------|-------------|
| 1         | -              | 0                          | 0,00        | 0,00                 | 0,00               | _                   | -           |
| 2         | 2 CFRP juostos | 64                         | 2068,00     | 131,00               | 0,00               | NSM                 | Ne          |
| 3         | CFRP lakštas   | 60                         | 3100,00     | 165,00               | 1000,00            | EBR                 | Ne          |
| 4         | 2 CFRP juostos | 64                         | 2068,00     | 131,00               | 1000,00            | NSM                 | Ne          |
| 5         | CFRP juosta    | 72                         | 2068,00     | 131,00               | 1000,00            | NSM                 | Ne          |
| 6         | 2 CFRP juostos | 64                         | 2068,00     | 131,00               | 1000,00            | NSM                 | Ne          |
| 7         | 2 CFRP juostos | 64                         | 2068,00     | 131,00               | 1000,00            | NSM                 | Taip        |

2 lentelės tęsinys

| Sijos Nr. | FRP rūšys      | $A_{f}$<br>mm <sup>2</sup> | $f_{f}$ MPa | E <sub>1</sub> , GPa | $\sigma_{p}$ , MPa | Stiprinimo<br>būdas | Inkaravimas |
|-----------|----------------|----------------------------|-------------|----------------------|--------------------|---------------------|-------------|
| 8         | -              | 0                          | 0,00        | 0,00                 | 0,00               | _                   | _           |
| 9         | CFRP lakštas   | 30                         | 3479,00     | 230,30               | 0,00               | EBR                 | Ne          |
| 10        | CFRP lakštas   | 70                         | 2452,59     | 165,49               | 0,00               | EBR                 | Ne          |
| 11        | CFRP strypas   | 60                         | 1878,00     | 121,42               | 0,00               | NSM                 | Ne          |
| 12        | CFRP juosta    | 40                         | 2452,59     | 165,49               | 0,00               | NSM                 | Ne          |
| 13        | CFRP juosta    | 20                         | 2452,59     | 165,49               | 0,00               | NSM                 | Ne          |
| 14        | CFRP strypas   | 60                         | 1878,00     | 121,42               | 0,00               | NSM                 | Taip        |
| 15        | CFRP juosta    | 40                         | 2452,59     | 165,49               | 0,00               | NSM                 | Taip        |
| 16        | _              | 0                          | 0,00        | 0,00                 | 0,00               | _                   |             |
| 17        | CFRP strypas   | 110                        | 2400,00     | 165,00               | 0,00               | NSM                 | Ne          |
| 18        | CFRP strypas   | 110                        | 2400,00     | 165,00               | 0,00               | NSM                 | Ne          |
| 19        | -              | 0                          | 0,00        | 0,00                 | 0,00               | _                   | _           |
| 20        | CFRP strypas   | 70                         | 2167,00     | 130,00               | 0,00               | NSM                 | Taip        |
| 21        | CFRP strypas   | 70                         | 2167,00     | 130,00               | 413,60             | NSM                 | Taip        |
| 22        | CFRP strypas   | 70                         | 2167,00     | 130,00               | 827,20             | NSM                 | Taip        |
| 23        | CFRP strypas   | 70                         | 2167,00     | 130,00               | 1240,88            | NSM                 | Taip        |
| 24        | 2 CFRP juostos | 30                         | 2739,50     | 158,80               | 0,00               | NSM                 | Ne          |
| 25        | 2 CFRP juostos | 30                         | 2739,50     | 158,80               | 0,00               | NSM                 | Ne          |
| 26        | 3 CFRP juostos | 40                         | 2739,50     | 158,80               | 0,00               | NSM                 | Ne          |
| 27        | -              | 0                          | 0,00        | 0,00                 | 0,00               | _                   | _           |
| 28        | CFRP juosta    | 30                         | 1922,00     | 164,00               | 0,00               | NSM                 | Ne          |
| 29        | CFRP juosta    | 30                         | 1922,00     | 164,00               | 429,02             | NSM                 | Ne          |
| 30        | CFRP juosta    | 30                         | 1922,00     | 164,00               | 666,17             | NSM                 | Ne          |
| 31        | CFRP juosta    | 30                         | 1922,00     | 164,00               | 823,28             | NSM                 | Ne          |
| 32        | -              | 0                          | 0,00        | 0,00                 | 0,00               |                     |             |
| 33        | CFRP strypas   | 50                         | 2350,00     | 170,00               | 0,00               | NSM                 | Ne          |
| 34        | GFRP strypas   | 50                         | 1350,00     | 64,00                | 0,00               | NSM                 | Ne          |
| 35        | 2 CFRP strypai | 100                        | 2350,00     | 170,00               | 0,00               | NSM                 | Ne          |
| 36        | 2 GFRP strypai | 100                        | 1350,00     | 64,00                | 0,00               | NSM                 | Ne          |
| 37        | 2 CFRP strypai | 100                        | 2350,00     | 170,00               | 0,00               | NSM                 | Ne          |
| 38        | 2 GFRP strypai | 100                        | 1350,00     | 64,00                | 0,00               | NSM                 | Ne          |
| 39        | GFRP strypas   | 110                        | 1350,00     | 64,00                | 0,00               | NSM                 | Ne          |
| 40        | -              | 0                          | 0,00        | 0,00                 | 0,00               | _                   | _           |
| 41        | 2 CFRP strypai | 100                        | 2350,00     | 170,00               | 0,00               | NSM                 | Ne          |
| 42        | 2 CFRP strypai | 100                        | 2350,00     | 170,00               | 0,00               | NSM                 | Ne          |
| 43        | 2 CFRP strypai | 100                        | 2350,00     | 170,00               | 0,00               | NSM                 | Taip        |
| 44        | 2 CFRP strypai | 100                        | 2350,00     | 170,00               | 0,00               | NSM                 | Ne          |
| 45        | 2 CFRP juostos | 60                         | 2500,00     | 165,00               | 0,00               | NSM                 | Ne          |
| 46        | 2 CFRP juostos | 60                         | 2500,00     | 165,00               | 0,00               | NSM                 | Ne          |
| 47        | 2 GFRP strypai | 100                        | 1350,00     | 64,00                | 0,00               | NSM                 | Ne          |
| 48        | 2 GFRP strypai | 100                        | 1350,00     | 64,00                | 0,00               | NSM                 | Ne          |
| 49        | 2 GFRP strypai | 100                        | 1350,00     | 64,00                | 0,00               | NSM                 | Ne          |
| 50        | GFRP strypas   | 110                        | 1350,00     | 64,00                | 0,00               | NSM                 | Ne          |
| 51        | GFRP strypas   | 110                        | 1350,00     | 64,00                | 0,00               | NSM                 | Taip        |
| 52        | GFRP strypas   | 110                        | 1350,00     | 64,00                | 0,00               | NSM                 | Ne          |
| 53        | GFRP strypas   | 110                        | 1350,00     | 64,00                | 0,00               | NSM                 | Taip        |
| 54        | -              | 0                          | 0,00        | 0,00                 | 0,00               | _                   | _           |
| 55        | CFRP lakštas   | 70                         | 2850,00     | 165,00               | 0,00               | EBR                 | Ne          |

2 lentelės pabaiga

| Sijos Nr. | FRP rūšys    | $\frac{A_{f}}{\mathrm{mm}^2}$ | $f_{f}$ MPa | E <sub>f</sub> , GPa | $\sigma_{p}$ , MPa | Stiprinimo<br>būdas | Inkaravimas |
|-----------|--------------|-------------------------------|-------------|----------------------|--------------------|---------------------|-------------|
| 56        | CFRP lakštas | 70                            | 2850,00     | 165,00               | 658,57             | EBR                 | Taip        |
| 57        | CFRP lakštas | 70                            | 2850,00     | 165,00               | 1012,86            | EBR                 | Taip        |
| 58        | CFRP lakštas | 70                            | 2850,00     | 165,00               | 1314,29            | EBR                 | Taip        |
| 59        | CFRP lakštas | 70                            | 2850,00     | 165,00               | 832,86             | EBR                 | Taip        |
| 60        | CFRP lakštas | 70                            | 2850,00     | 165,00               | 992,86             | EBR                 | Taip        |
| 61        | CFRP lakštas | 70                            | 2850,00     | 165,00               | 1205,71            | EBR                 | Taip        |
| 62        | CFRP lakštas | 70                            | 2850,00     | 165,00               | 1014,29            | EBR                 | Taip        |
| 63        | CFRP lakštas | 70                            | 2850,00     | 165,00               | 1322,86            | EBR                 | Taip        |
| 64        | CFRP lakštas | 70                            | 2850,00     | 165,00               | 1057,14            | EBR                 | Taip        |
| 65        | CFRP lakštas | 70                            | 2850,00     | 165,00               | 1191,43            | EBR                 | Taip        |
| 66        | CFRP lakštas | 70                            | 2850,00     | 165,00               | 970,00             | EBR                 | Taip        |
| 67        | CFRP lakštas | 70                            | 2850,00     | 165,00               | 1267,14            | EBR                 | Taip        |
| 68        | CFRP lakštas | 70                            | 2850,00     | 165,00               | 945,71             | EBR                 | Taip        |
| 69        | CFRP lakštas | 70                            | 2850,00     | 165,00               | 1292,86            | EBR                 | Taip        |
| 70        | CFRP lakštas | 70                            | 2850,00     | 165,00               | 1067,14            | EBR                 | Taip        |
| 71        | CFRP lakštas | 70                            | 2850,00     | 165,00               | 1145,71            | EBR                 | Taip        |
| 72        | CFRP lakštas | 70                            | 2850,00     | 165,00               | 1158,57            | EBR                 | Taip        |
| 73        | CFRP lakštas | 70                            | 2850,00     | 165,00               | 1265,71            | EBR                 | Taip        |

Čia:  $A_f - FRP$  plotas;  $f_f - FRP$  ribiniai įtempiai;  $E_f - FRP$  tamprumo modulis;  $\sigma_p$  - iš ankstinio įtempimo įtempiai.

3 lentelė. Pagrindiniai rezultatai

Table 3. Main results

| Sijos | $M_{y.exp}$ , | $M_{u.exp}$ , | M <sub>calc</sub> , | $M_{u.exp}$        | $M_{u.exp}$       | $h_{arrline arrls}/h$ | A/A bond.eff | $A_{f} E_{f}$         | $A_{i}f/A_{i}f_{i}$ | L <sub>hund</sub> /L | Irimo      |
|-------|---------------|---------------|---------------------|--------------------|-------------------|-----------------------|--------------|-----------------------|---------------------|----------------------|------------|
| INT.  | KINM<br>27.20 | KINM<br>40.20 | KINM                | M <sub>y.exp</sub> | M <sub>calc</sub> | 0.00                  | %0           | $A_{sl} \cdot E_{sl}$ | jej srey            | Dona                 | rezultatas |
| 1     | 37,20         | 49,20         | 48,67               | 1,32               | 1,01              | 0,88                  | -            | -                     | -                   | -                    | a          |
| 2     | 54,12         | 75,72         | 76,64               | 1,40               | 0,99              | 0,77                  | 0,09         | 0,10                  | 0,82                | 0,88                 | b          |
| 3     | 75,42         | 87,84         | 87,25               | 1,16               | 1,01              | 0,68                  | 0,12         | 0,12                  | 1,16                | 0,88                 | b          |
| 4     | 75,78         | 85,02         | 86,54               | 1,12               | 0,98              | 0,72                  | 0,09         | 0,10                  | 0,82                | 0,88                 | b          |
| 5     | 58,20         | 58,20         | 92,58               | 1,00               | 0,63              | 0,75                  | 0,21         | 0,12                  | 0,93                | 0,88                 | b          |
| 6     | 70,80         | 109,20        | 91,25               | 1,54               | 1,20              | 0,86                  | 0,09         | 0,10                  | 0,82                | 1,00                 | c          |
| 7     | 73,20         | 106,80        | 91,15               | 1,46               | 1,17              | 0,86                  | 0,09         | 0,10                  | 0,82                | 0,88                 | с          |
| 8     | 24,51         | 29,50         | 23,49               | 1,20               | 1,26              | 0,93                  | -            | -                     | -                   | _                    | а          |
| 9     | 31,93         | 43,25         | 49,05               | 1,35               | 0,88              | 0,85                  | 0,02         | 0,14                  | 1,01                | 0,90                 | b          |
| 10    | 32,05         | 38,45         | 67,35               | 1,20               | 0,57              | 0,80                  | 0,14         | 0,27                  | 1,88                | 0,90                 | b          |
| 11    | 32,85         | 48,63         | 54,95               | 1,48               | 0,88              | 0,83                  | 0,23         | 0,18                  | 1,31                | 0,90                 | b          |
| 12    | 32,54         | 45,24         | 46,33               | 1,39               | 0,98              | 0,86                  | 0,07         | 0,14                  | 0,94                | 0,90                 | b          |
| 13    | 30,17         | 41,21         | 37,60               | 1,37               | 1,10              | 0,89                  | 0,07         | 0,08                  | 0,56                | 0,90                 | с          |
| 14    | 34,18         | 55,76         | 54,95               | 1,63               | 1,01              | 0,83                  | 0,23         | 0,18                  | 1,31                | 0,90                 | с          |
| 15    | 32,46         | 51,83         | 46,33               | 1,60               | 1,12              | 0,86                  | 0,07         | 0,14                  | 0,94                | 0,90                 | с          |
| 16    | 22,88         | 24,15         | 24,19               | 1,06               | 1,00              | 0,84                  | -            | _                     | -                   | -                    | a          |
| 17    | 41,48         | 49,05         | 47,75               | 1,18               | 1,03              | 0,67                  | 0,30         | 0,41                  | 2,31                | 0,90                 | b          |
| 18    | 39,19         | 49,95         | 47,75               | 1,27               | 1,05              | 0,67                  | 0,30         | 0,41                  | 2,31                | 0,95                 | b          |
| 19    | 81,86         | 86,94         | 82,85               | 1,06               | 1,05              | 0,90                  | _            | _                     | _                   | _                    | a          |
| 20    | 93,58         | 141,52        | 123,45              | 1,51               | 1,15              | 0,81                  | 0,23         | 0,08                  | 0,56                | 0,88                 | с          |
| 21    | 109,66        | 146,29        | 131,59              | 1,33               | 1,11              | 0,82                  | 0,23         | 0,08                  | 0,56                | 0,87                 | с          |
| 22    | 118,79        | 147,01        | 131,43              | 1,24               | 1,12              | 0,82                  | 0,23         | 0,08                  | 0,56                | 0,87                 | с          |
| 23    | 122,11        | 139,75        | 130,35              | 1,14               | 1,07              | 0,80                  | 0,23         | 0,08                  | 0,56                | 0,87                 | с          |
| 24    | 13,07         | 19,63         | 17,52               | 1,50               | 1,12              | 0,79                  | 0,07         | 0,26                  | 1,24                | 0,93                 | b          |
| 25    | 13,63         | 20,48         | 18,51               | 1,50               | 1,11              | 0,77                  | 0,07         | 0,21                  | 0,98                | 0,93                 | b          |
| 26    | 17,28         | 23,73         | 23,95               | 1,37               | 0,99              | 0,71                  | 0,07         | 0,22                  | 1,04                | 0,93                 | b          |
| 27    | 22,37         | 27,66         | 23,47               | 1,24               | 1,18              | 0,90                  | _            | _                     | _                   | _                    | a          |

3 lentelės tęsinys

| Sijos | M <sub>y.exp</sub> , | M <sub>u.exp</sub> , | M <sub>calc</sub> , | $M_{u.exp}$              | M <sub>u.exp</sub> / | $h_{crlim calc}/h$ | $A/A_{bond.eff}$ | $A_f E_f$                                            | $A_i f / A_{sl} f_y$ | L <sub>bond</sub> /L | Irimo |
|-------|----------------------|----------------------|---------------------|--------------------------|----------------------|--------------------|------------------|------------------------------------------------------|----------------------|----------------------|-------|
| 28    | 27.14                | <u>41 84</u>         | 37.64               | $\frac{M_{y.exp}}{1.54}$ | 1 1 1 1              | 0.85               | 0.07             | $\begin{array}{c} A_{sl} L_{sl} \\ 0.14 \end{array}$ | 0.59                 | 0.95                 | C     |
| 20    | 30.91                | 42.30                | 37,64               | 1,34                     | 1,11                 | 0,85               | 0.07             | 0.14                                                 | 0,59                 | 0,95                 | c     |
| 30    | 32.63                | 42.82                | 37.64               | 1,37                     | 1,12                 | 0.85               | 0.07             | 0.14                                                 | 0.59                 | 0.95                 | c     |
| 31    | 33.37                | 39.35                | 37.64               | 1,18                     | 1,05                 | 0.85               | 0.07             | 0.14                                                 | 0.59                 | 0.95                 | c     |
| 32    | 25,80                | 28,16                | 28,60               | 1,09                     | 0,98                 | 0,87               | _                | _                                                    | -                    | _                    | a     |
| 33    | 32,04                | 43,64                | 51,87               | 1,36                     | 0,84                 | 0,77               | 0,20             | 0,18                                                 | 0,96                 | 0.83                 | b     |
| 34    | 40,20                | 46,88                | 40,74               | 1,17                     | 1,15                 | 0,82               | 0,20             | 0,07                                                 | 0,55                 | 0,83                 | b     |
| 35    | 37,92                | 45,80                | 62,51               | 1,21                     | 0,73                 | 0,72               | 0,20             | 0,37                                                 | 1,92                 | 0,83                 | b     |
| 36    | 29,48                | 39,68                | 48,09               | 1,35                     | 0,83                 | 0,79               | 0,20             | 0,14                                                 | 1,10                 | 0,83                 | b, c  |
| 37    | 32,92                | 44,88                | 62,51               | 1,36                     | 0,72                 | 0,72               | 0,20             | 0,37                                                 | 1,92                 | 0,83                 | b     |
| 38    | 32,68                | 44,24                | 48,09               | 1,35                     | 0,92                 | 0,79               | 0,20             | 0,14                                                 | 1,10                 | 0,83                 | b     |
| 39    | 33,48                | 42,32                | 49,00               | 1,26                     | 0,86                 | 0,78               | 0,30             | 0,16                                                 | 1,24                 | 0,83                 | b     |
| 40    | 25,80                | 28,16                | 28,26               | 1,09                     | 1,00                 | 0,87               | —                | -                                                    | -                    | _                    | а     |
| 41    | 34,20                | 34,20                | 60,43               | 1,00                     | 0,57                 | 0,71               | 0,52             | 0,38                                                 | 1,93                 | 0,32                 | b     |
| 42    | 34,12                | 39,04                | 60,43               | 1,14                     | 0,65                 | 0,71               | 0,42             | 0,38                                                 | 1,93                 | 0,40                 | b     |
| 43    | 37,44                | 48,72                | 60,43               | 1,30                     | 0,81                 | 0,71               | 0,42             | 0,38                                                 | 1,93                 | 0,40                 | b     |
| 44    | 40,20                | 46,88                | 60,43               | 1,17                     | 0,78                 | 0,71               | 0,20             | 0,38                                                 | 1,93                 | 0,83                 | b     |
| 45    | 33,36                | 37,72                | 50,68               | 1,13                     | 0,74                 | 0,76               | 0,18             | 0,20                                                 | 1,15                 | 0,32                 | b     |
| 46    | 34,96                | 44,68                | 50,68               | 1,28                     | 0,88                 | 0,76               | 0,07             | 0,20                                                 | 1,15                 | 0,83                 | b     |
| 47    | 29,72                | 33,80                | 46,75               | 1,14                     | 0,72                 | 0,78               | 0,52             | 0,14                                                 | 1,11                 | 0,32                 | b     |
| 48    | 29,40                | 40,00                | 46,75               | 1,36                     | 0,86                 | 0,78               | 0,42             | 0,14                                                 | 1,11                 | 0,40                 | b     |
| 49    | 32,92                | 44,88                | 46,75               | 1,36                     | 0,96                 | 0,78               | 0,20             | 0,14                                                 | 1,11                 | 0,83                 | b     |
| 50    | 30,52                | 39,36                | 47,62               | 1,29                     | 0,83                 | 0,78               | 0,63             | 0,16                                                 | 1,25                 | 0,40                 | b     |
| 51    | 30,88                | 46,92                | 47,62               | 1,52                     | 0,99                 | 0,78               | 0,63             | 0,16                                                 | 1,25                 | 0,40                 | b     |
| 52    | 33,48                | 42,32                | 47,62               | 1,26                     | 0,89                 | 0,78               | 0,30             | 0,16                                                 | 1,25                 | 0,83                 | b     |
| 53    | 34,56                | 54,00                | 47,62               | 1,56                     | 1,13                 | 0,78               | 0,30             | 0,16                                                 | 1,25                 | 0,83                 | a     |
| 54    | 36,00                | 44,46                | 47,81               | 1,24                     | 0,93                 | 0,82               | -                | -                                                    | - 0.70               | -                    | a 1   |
| 55    | 44,58                | 53,76                | 69,76               | 1,21                     | 0,//                 | 0,74               | 0,12             | 0,10                                                 | 0,70                 | 0,80                 | b     |
| 50    | 59.02                | 07,62                | /5,90               | 1,22                     | 0,89                 | 0,72               | 0,12             | 0,10                                                 | 0,70                 | 0,80                 | C     |
| 50    | 58,92                | 75.06                | 19,23<br>92.14      | 1,21                     | 0,90                 | 0,71               | 0,12             | 0,10                                                 | 0,70                 | 0,80                 | c     |
| 50    | 43 20                | /3,00                | 62,14<br>50,12      | 1,11                     | 0,91                 | 0,70               | 0,12             | 0,10                                                 | 0,70                 | 0,80                 | c     |
| 60    | 43,20                | 52.38                | 59,42               | 1,15                     | 0,85                 | 0,80               | 0,12             | 0,27                                                 | 1,80                 | 0,80                 | C     |
| 61    | 48.06                | 54.36                | 59.42               | 1,10                     | 0,00                 | 0,80               | 0,12             | 0,27                                                 | 1,80                 | 0,80                 | C     |
| 62    | 57.36                | 65 52                | 70.69               | 1,15                     | 0.93                 | 0.75               | 0.12             | 0.15                                                 | 1,00                 | 0,80                 | C     |
| 63    | 62.58                | 69.78                | 71,66               | 1,14                     | 0.97                 | 0.75               | 0.12             | 0.15                                                 | 1,05                 | 0.80                 | c     |
| 64    | 82.68                | 87.60                | 90.67               | 1,12                     | 0.97                 | 0.65               | 0.12             | 0.07                                                 | 0.50                 | 0.80                 | c     |
| 65    | 82.26                | 91.14                | 91.98               | 1,00                     | 0.99                 | 0.64               | 0.12             | 0.07                                                 | 0.50                 | 0.80                 | c     |
| 66    | 58.44                | 67.02                | 72.05               | 1,11                     | 0.93                 | 0.65               | 0.12             | 0.10                                                 | 0.70                 | 0.80                 | c     |
| 67    | 66.06                | 73.14                | 74.83               | 1,11                     | 0,98                 | 0,63               | 0,12             | 0,10                                                 | 0,70                 | 0,80                 | c     |
| 68    | 63,00                | 75,72                | 87,45               | 1,20                     | 0,87                 | 0,77               | 0,12             | 0,10                                                 | 0,70                 | 0,80                 | с     |
| 69    | 66,48                | 76,08                | 87,45               | 1,14                     | 0,87                 | 0,77               | 0,12             | 0,10                                                 | 0,70                 | 0,80                 | с     |
| 70    | 46,26                | 63,18                | 61,20               | 1,37                     | 1,03                 | 0,88               | 0,12             | 0,27                                                 | 1,86                 | 0,80                 | с     |
| 71    | 61,32                | 75,24                | 74,53               | 1,23                     | 1,01                 | 0,85               | 0,12             | 0,15                                                 | 1,05                 | 0,80                 | с     |
| 72    | 73,14                | 82,98                | 89,03               | 1,13                     | 0,93                 | 0,81               | 0,12             | 0,10                                                 | 0,70                 | 0,80                 | с     |
| 73    | 85,38                | 102,30               | 106,05              | 1,20                     | 0,96                 | 0,77               | 0,12             | 0,07                                                 | 0,50                 | 0,80                 | с     |

Čia  $M_{y,exp}$  – bandymo metu nustatytas lenkimo momentas, kai tempiamosios armatūros įtempiai pasiekia takumo ribą (pasireiškia didelės plastinės deformacijos);  $M_{u,exp}$  – bandymo metu nustatytas ribinis lenkimo momentas, kai konstrukcija suyra;  $h_{erlim.calc}/h$  – apskaičiuoto ribinio plyšio aukščio ir elemento aukščio santykis;  $M_{calc}$  – apskaičiuotas ribinis lenkimo momentas pagal (8) ir (9) lygtis;  $b_{bond}$  – bendras klijuojamo paviršiaus plotis (strypo atveju perimetras);  $A_{bond.eff}$  – klijuojamo paviršiaus plotas 1 m ilgyje;  $L_{bond}$  – bendras klijuojamo paviršiaus ilgis. Irimo rezultatas: a – gniuždomas betonas suiro; b – stiprinimo medžiaga atsiklijavo; c – nutrūko pluoštu armuotas kompozitas.

Iš 3 lentelės galime palyginti apskaičiuotus lenkimo momentus pagal (8) ir (9) lygtis su nustatytais eksperimentiškai (7 pav.).

Pasiūlyto skaičiavimo metodo statistiniai parametrai:

- sisteminė paklaida: 0,95;
- atsitiktinė paklaida: 0,15;
- variacijos koeficientas: ±15,51 %;
- pasikliautinumo ribos (P = 95 %): 0,92...  $M_{u.exp}/M_{calc}$ ...0,98.

Atlikta regresinė analizė, siekiant sužinoti skaičiavimo metodo priklausomybę nuo atskirų argumentų reikšmių ir jų santykinių dydžių (8 pav.).

Kaip matome iš 8 pav., santykinių dydžių dydžių  $A_j \cdot \mathbf{E}_{f} / A_{s1} \cdot \mathbf{E}_{s1}$ ,  $A_f / A_{bondeff}$ ,  $L_{bond} / L$ ,  $A_j \cdot \mathbf{f}_f / A_{s1} \cdot f_y$  koreliacija su  $M_{u.exp} / M_{calc}$  artima vidutinei. Taigi žinodami, kad tarp šių dydžių yra ryšys, ir turėdami priklausomybės grafikus, nustatome ribines

siūlomo skaičiavimo metodo taikymo (rekomenduojamas stiprinimo pluoštu armuotu kompozitu taikymo) reikšmes:

$$\begin{aligned} &-A_f \cdot \mathbf{E}_f / A_{s1} \cdot \mathbf{E}_{s1} \leq 0,35; \\ &-A_f / A_{bond.eff} \leq 0,40 \%; \\ &-L_{bond} / L \geq 0,79; \\ &-A_f \cdot \mathbf{f}_f / A_{s1} \cdot \mathbf{f}_y \leq 1,80. \end{aligned}$$

Statistiniai parametrai perskaičiuoti atmetus ribas viršijančias sijas:

- sisteminė paklaida: 0,99;
- atsitiktinė paklaida: 0,12;
- variacijos koeficientas: ±12,04 %;
- pasikliautinumo ribos (P = 95 %): 0,96...  $M_{u.exp}$  /  $M_{calc}$  ...1,02.

Kaip matome, siūlomas skaičiavimo metodas leidžia gana tiksliai nustatyti gelžbetoninių sijų, sustiprintų pluoštu armuotu kompozitu, laikomąją galią.



7 pav. Nustatytų eksperimentiškai ir apskaičiuotų pagal (8), (9) lygtis lenkimo momentų santykio pasiskirstymas Fig. 7. The ratio of ultimate bending moments set experimentally and calculated by Eq. (8) and (9)



8 pav. Metodo tikslumo (kintamojo) priklausomybė nuo nekintamųjų santykinių dydžių Fig. 8. A regression analysis of proposed calculation method accuracy

## Išvados

- Plyšiai statmenajame lenkiamosios gelžbetoninės konstrukcijos pjūvyje yra įtempių būvio pasekmė, todėl, naudojantis plyšio parametrais, galima nustatyti lenkiamojo gelžbetoninio elemento, sustiprinto pluoštu armuotu kompozitu, esamą įtempių ir deformacijų būvį. Siūlomas laikomosios galios skaičiavimo metodas pagal apskaičiuotą ribinį plyšio aukštį leidžia gana tiksliai prognozuoti šių elementų irimą.
- 2. Gelžbetoninių sijų, sustiprintų anglies pluošto, stiklo pluošto kompozito lakštais, juostomis ir strypais, pritvirtintais išoriškai ir įgilintais į griovelius, skaičiavimo rezultatai patvirtino, kad galima taikyti trikampę betono gniuždomosios zonos diagramą, nevertinant tempiamojo betono virš plyšio, nustatyti elemento laikomąją galią ir pluoštu armuoto kompozito įtempius pagal apskaičiuotą ribinį plyšio aukštį irimo etape.
- Remiantis koreliacija, grafiškai nustatyti skaičiavimo metodo taikymo apribojimai (rekomenduojami stiprinimo pluoštu armuotu kompozitu apribojimai). Siūlomo skaičiavimo metodo pasikliautinumo ribos 0,96...M<sub>u.exp</sub>/M<sub>calc</sub>...1,02 (P = 95 %) be apribojimus neatitinkančių bandinių.

### Literatūra

- ACI Committee 318, Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14).
  430 p.
- Barros, J. A. O.; Fortes, A. S. 2005. Flexural strengthening of concrete beams with CFRP laminates bonded into slits, *Cement and Concrete Composites* 27(4): 471–480. https://doi.org/10.1016/j.cemconcomp.2004.07.004
- El-Hacha, R.; Gaafar, M. 2011. Flexural strengthening of reinforced concrete beams using prestressed, near-surface-mounted CFRP bars, *PCI Journal* 56(4): 134–151. https://doi.org/10.15554/pcij.09012011.134.151
- Jokūbaitis, V.; Juknevičius, L. 2013. Critical depth of normal cracks in reinforced concrete beams of rectangular cross-section, *Journal of Civil Engineering and Management* 19(4): 583–590. https://doi.org/10.3846/13923730.2013.812575
- Jokūbaitis, V.; Juknevičius, L.; Šalna, R. 2013. Conditions for failure of normal section in flexural reinforced concrete beams of rectangular cross-section, in 11th International Conference on Modern Building Materials, Structures and Techniques, 16–17 May 2013, Vilnius, Lithuania. https://doi.org/10.1016/j.proeng.2013.04.060
- Jung, W.-T.; Park, Y.-H.; Park, J.-S.; Kang, J.-Y.; You, Y.-J. 2005. Experimental investigation on flexural behavior of RC Beams strengthened by NSM CFRP reinforcements,

in 7th International Symposium of the Fiber-Reinforced Polymer Reinforcement for Reinforced Concrete Structures, 6–9 November 2005, Kansas City, Missouri, USA.

- LST EN 1992-1-1:2005. Eurocode 2: Design of concrete structures – Part 1-1: General rules and rules for buildings. European standard.
- Peng, H.; Zhang, J.; Cai, C. S.; Liu, Y. 2014. An experimental study on reinforced concrete beams strengthened with prestressed near surface mounted CFRP strips, *Engineering Structures* 79: 222–233. https://doi.org/10.1016/j.engstruct.2014.08.007
- Rezazadeh, M.; Costa, I.; Barros, J. 2014. Influence of prestress level on NSM CFRP laminates for the flexural strengthening of RC beams, *Composite Structures* 116: 489–500. https://doi.org/10.1016/j.compstruct.2014.05.043
- Rüsch, H. 1960. Research towards a general flexural theory for structural concrete, ACI Journal 57: 1–28.
- Sharaky, I. A.; Torres, L.; Comas, J.; Barris, C. 2014. Flexural response of reinforced concrete (RC) beams strengthened with near surface mounted (NSM) fibre reinforced polymer (FRP) bars, *Composite Structures* 109: 8–22. https://doi.org/10.1016/j.compstruct.2013.10.051
- Sharaky, I. A.; Torres, L.; Sallam, H. E. M. 2015. Experimental and analytical investigation into the flexural performance of RC beams with partially and fully bonded NSM FRP bars/ strips, *Composite Structures* 122: 113–126. https://doi.org/10.1016/j.compstruct.2014.11.057
- Shukri, A. A.; Darain, K. M.; Jumaat, M. Z. 2015. The tension-stiffening contribution of NSM CFRP to the behavior of strengthened RC beams, *Materials* 8(7): 4131–4146. https://doi.org/10.3390/ma8074131
- Slaitas, J.; Hlavac, Z.; Šneideris, A. 2017. Flexural reinforced concrete elements normal section bearing capacity evaluation in fracture stage, *Engineering Structures and Technologies* 9(2): 70–78. https://doi.org/10.3846/2029882X.2017.1322919
- Woo, S.-K.; Nam, J.-W.; Kim, J.-H. J.; Han, S.-H.; Byun, K. J. 2008. Suggestion of flexural capacity evaluation and prediction of prestressed CFRP strengthened design, *Engineering Structures* 30: 3751–3763. https://doi.org/10.1016/j.engstruct.2008.06.013
- Židonis, I. 2007a. A simple to integrate formula of stress as a function of strain in concrete and its description procedure, *Mechanika* 4(66): 23–30.
- Židonis, I. 2007b. Method for calculation of stress-strain state parameters in normal sections of structural members, in 9th International Conference on Modern Building Materials, Structures and Techniques, 16–18 May 2007, Vilnius, Lithuania.
- Židonis, I. 2010. Alternative method for calculation of stressstrain state parameters in cross-sections of beam type members, in 10th International Conference on Modern Building Materials, Structures and Techniques, 19–21 May 2010, Vilnius, Lithuania.

## FLEXURAL REINFORCED CONCRETE ELEMENTS, STRENGTHENED WITH FIBRE REINFORCED POLYMER, BEARING CAPACITY EVALUATION ACCORDING TO LIMIT CRACK DEPTH

## J. Šlaitas

#### Abstract

The research was made on condition assessment of flexed reinforced concrete structures, strengthened with fibre reinforced polymers, in fracture stage. Universal bearing capacity calculation method based on limit normal section crack depth was proposed. This paper confirms the hypothesis of triangular concrete's compressive zone chart usage for flexural strength calculation, without tensile concrete above crack evaluation. There is established connection between crack depth and FRP stress-strain, which allows to decide about structures bearing capacity reserve. The calculation results are confirmed with experimental studies of 73 reinforced concrete beams, strengthened with carbon fibre reinforced polymer (CFRP) and glass fibre reinforced polymer (GFRP) sheets, plates, strips and rods, taken from different researches. Furthermore, recommended limits of strengthening with FRP were proposed.

**Keywords:** reinforced concrete, fibre reinforced polymer, flexural strength, concrete fracture, crack depth.